Similar Mechanisms Underlie the Detection of Horizontal and Vertical Disparity Corrugations
نویسندگان
چکیده
Our aim was to compare sensitivity for horizontal and vertical disparity corrugations and to resolve whether these stimuli are processed by similar or radically different underlying mechanisms. We measure global disparity sensitivity as a function of carrier spatial frequency for equi-detectable carriers and found a similar optimal carrier relationship for vertical and horizontal stimuli. Sensitivity as a function of corrugation spatial frequency for stimuli of comparable spatial summation and composed of optimal, equi-detectable narrowband carriers did not significantly differ for vertical and horizontal stimuli. A small anisotropy was revealed when fixed, high contrast broadband carriers were used. In a separate discrimination-at-threshold experiment, multiple mechanisms of similar tuning were revealed to underlie the detection of both vertical and horizontal disparity corrugations. We conclude that the processing of the horizontal and vertical disparity corrugations occurs along similar lines.
منابع مشابه
Testing the horizontal-vertical stereo anisotropy with the critical-band masking paradigm.
Stereo vision has a well-known anisotropy: At low frequencies, horizontally oriented sinusoidal depth corrugations are easier to detect than vertically oriented corrugations (both defined by horizontal disparities). Previously, Serrano-Pedraza and Read (2010) suggested that this stereo anisotropy may arise because the stereo system uses multiple spatial-frequency disparity channels for detectin...
متن کاملEffects of horizontal and vertical additive disparity noise on stereoscopic corrugation detection
Stereoscopic corrugation detection in the presence of horizontal- and vertical- additive disparity noise was examined using a signal detection paradigm. Random-dot stereograms either represented a 3-D square-wave surface with various amounts of Gaussian-distributed additive disparity noise or had the same disparity values randomly redistributed. Stereoscopic detection of 2 arcmin peak amplitude...
متن کاملThresholds for sine-wave corrugations defined by binocular disparity in random dot stereograms: Factor analysis of individual differences reveals two stereoscopic mechanisms tuned for spatial frequency
Threshold functions for sinusoidal depth corrugations typically reach their minimum (highest sensitivity) at spatial frequencies of 0.2-0.4 cycles/degree (cpd), with lower thresholds for horizontal than vertical corrugations at low spatial frequencies. To elucidate spatial frequency and orientation tuning of stereoscopic mechanisms, we measured the disparity sensitivity functions, and used fact...
متن کاملThe Stereoscopic Anisotropy Develops During Childhood
PURPOSE Human vision has a puzzling stereoscopic anisotropy: horizontal depth corrugations are easier to detect than vertical depth corrugations. To date, little is known about the function or the underlying mechanism responsible for this anisotropy. Here, we aim to find out whether this anisotropy is independent of age. To answer this, we compare detection thresholds for horizontal and vertica...
متن کاملMultiple channels for horizontal, but only one for vertical corrugations? A new look at the stereo anisotropy.
Stereo vision displays a well-known anisotropy: disparity-defined slant is easier to detect for rotations about a horizontal axis than about a vertical axis, and low-frequency sinusoidal depth corrugations are easier to detect when the corrugations are horizontal than when they are vertical. Here, we determined disparity thresholds for vertically and horizontally oriented depth corrugations wit...
متن کامل